Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4}\). Số điểm cực trị của hàm số đã cho là A.\(2\) B.\(1\) C.\(0\) D.\(3\)
Đáp án đúng: A Giải chi tiết:Xét phương trình \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\\x = 3\end{array} \right.\) Trong đó \(x = 0;x = 2\) là các nghiệm bội bậc lẻ nên hàm số \(y = f\left( x \right)\) có hai điểm cực trị. (còn \(x = 1;x = 3\) là các nghiệm bội bậc chẵn nên không phải là điểm cực trị của hàm số \(y = f\left( x \right)\)) Chọn A.