y+z+1x=x+z+2y=x+y−3z=1x+y+zy+z+1x=x+z+2y=x+y−3z=1x+y+z(đk x+y+z≠0≠0
⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2
⇒1x+y+z=2⇒x+y+z=0,5⇒1x+y+z=2⇒x+y+z=0,5
⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z
⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12
⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56
⇒z=0,5−12−56=−56⇒z=0,5−12−56=−56
Vậy x=12,y=56,z=−56