Em tách từng câu ra để hỏi nhé
\(\begin{array}{l}
14)\,1)\,x = \sqrt {4 + 2.2\sqrt 3 + 3} + \sqrt {4 - 2.2\sqrt 3 + 3} \\
= \sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} \\
= \left| {2 + \sqrt 3 } \right| + \left| {2 - \sqrt 3 } \right| = 2 + \sqrt 3 + 2 - \sqrt 3 = 4\\
Suy\,ra\,A = \dfrac{{3\sqrt 4 - 5}}{{4 + 3}} = \dfrac{{6 - 5}}{7} = \dfrac{1}{7}\\
2)\,B = \dfrac{{\sqrt x \left( {\sqrt x + 1} \right) + \left( {2\sqrt x - 1} \right)\left( {\sqrt x - 1} \right) - 6}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{x + \sqrt x + 2x - 3\sqrt x + 1 - 6}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{3x - 2\sqrt x - 5}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{3x + 3\sqrt x - 5\sqrt x - 5}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x + 1} \right) - 5\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{\left( {3\sqrt x - 5} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} = \dfrac{{3\sqrt x - 5}}{{\sqrt x - 1}}\\
3)\,B:A = \dfrac{{3\sqrt x - 5}}{{\sqrt x - 1}}:\dfrac{{3\sqrt x - 5}}{{x + 3}} = \dfrac{{x + 3}}{{\sqrt x - 1}}\\
\sqrt {\dfrac{B}{A}} = \sqrt {\dfrac{{x + 3}}{{\sqrt x - 1}}} \,\,\left( {x > 1} \right)\\
\dfrac{{x + 3}}{{\sqrt x - 1}} = \dfrac{{x - 1 + 4}}{{\sqrt x - 1}} = \sqrt x + 1 + \dfrac{4}{{\sqrt x - 1}}\\
= \left( {\sqrt x - 1} \right) + \dfrac{4}{{\sqrt x - 1}} + 2\mathop \ge \limits^{Co - si} 2\sqrt {\left( {\sqrt x - 1} \right).\dfrac{4}{{\sqrt x - 1}}} + 2\\
\Leftrightarrow \dfrac{B}{A} \ge 8\\
\Rightarrow \sqrt {\dfrac{B}{A}} \ge 2\sqrt 2 \\
Min\,\sqrt {\dfrac{B}{A}} = 2\sqrt 2 \Leftrightarrow \sqrt {x - 1} = \dfrac{4}{{\sqrt {x - 1} }} \Rightarrow x = 5\left( {tm} \right)
\end{array}\)