Đáp án đúng: D
Giải chi tiết:Tính \(M\left( x \right);\,\,N\left( x \right)\)
\(\begin{array}{l}M\left( x \right) = A\left( x \right) + B\left( x \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = ({x^4} + 2{x^2} - x + 5) + \left( { - {x^4} - 2{x^2} + 4x - 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{x^4} - {x^4}} \right) + \left( {2{x^2} - 2{x^2}} \right) + \left( {4x - x} \right) + \left( {5 - 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3x + 4\\N\left( x \right) = A\left( x \right) - B\left( x \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = ({x^4} + 2{x^2} - x + 5) - \left( { - {x^4} - 2{x^2} + 4x - 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {x^4} + 2{x^2} - x + 5 + {x^4} + 2{x^2} - 4x + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{x^4} + {x^4}} \right) + \left( {2{x^2} + 2{x^2}} \right) + \left( { - x - 4x} \right) + \left( {5 + 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2{x^4} + 4{x^2} - 5x + 6\end{array}\)
Vậy : \(M\left( x \right) = \,\,\,3x + 4;\,\,N\left( x \right) = 2{x^4} + 4{x^2} - 5x + 6\)
Chọn D