Hai số trên là hai số tự nhiên liên tiếp nên tổng của chúng phải là một số lẻ
Đặt tổng của chúng là \(\widehat{abc}\Rightarrow c\) lẻ.
Tổng của chúng là một số chia hết cho 5 \(\Rightarrow c=0\) hoặc \(c=5\) , do c lẻ nên \(c=5\)
\(\Rightarrow\widehat{abc}=\overline{ab5}\)
Tổng các chữ số hàng trăm và chữ số hàng đơn vị là một số chia hết cho 9 nên \(a+5\) là 1 số chia hết cho \(9\) \(\Rightarrow a=4\)
\(\Rightarrow\overline{abc}=\overline{4b5}\)
Tổng chữ số hàng trăm và chữ số hàng chục là 1 số chia hết cho 4 nên \(4+b\) là \(1\) số chia hết cho 4 hay \(4+b\) là bội của \(4\)
Do \(b\le9\Rightarrow4+b\le13\Rightarrow B\in\left\{4;8\right\}\)
* Với \(b=4\) ta có: \(\overline{abc}=445\)
\(\Rightarrow\) Số bé là:
\(\left(445-1\right):2=222\)
\(\Rightarrow\) Số lớn là:
\(222+1=223\)
Trong hai số này không có số nào chia hết cho 9 \(\Rightarrow\) loại
* Với \(b=8\) ta có: \(\overline{abc}=485\)
\(\Rightarrow\) Số bé là:
\(\left(485-1\right):2=242\)
\(\Rightarrow\) Số lớn là:
\(242+1=243\)
Chia hết cho 9 => Chọn
Vậy hai số cần tìm là 242 và 243