Đáp án:
b.
góc QPN=góc QMN=80
góc PNM=góc PQM=100
Giải thích các bước giải:
a. Gọi E là giao của AC và BD
ABCD là hình thang cân -> AC=BD
Xét ΔDQP và ΔCNP có
DQ=CN=($\frac{AC}{2}$ = $\frac{BD}{2}$ )
góc QDP = góc NCP
DP=CP
-> ΔDQP = ΔCNP (c.g.c)
-> góc DPQ=góc CPN
Xét ΔDEP và ΔCEP có
DE=CE
cạnh EP chung
DP=CP
-> ΔDEP = ΔCEP (c.c.c)
-> góc DPE=góc CPE=90
<-> góc DPQ + góc QPE= góc CPN+góc NPE
-> góc QPE = góc NPE
-> PM là tia phân giác của góc QMN
b. Vì Q,P là trung điểm DB,DC
-> QP là đường trung bình -> QP=$\frac{BC}{2}$, QP//BC
CM tương tự MN=$\frac{BC}{2}$
PN=$\frac{AD}{2}$
QM=$\frac{AD}{2}$
Mà AD=BC
-> QP=MN=PN=QM
-> QPNM là hình thoi
Vì QP//BC -> góc DPQ=góc DCB=50
góc QPM=góc DPM-góc DPQ=90-50=40
góc QPN=2.góc QPM=2.40=80
góc PNM=180-góc QPN=100
góc QPN=góc QMN=80
góc PNM=góc PQM=100