Cho hypebol \((H):{x^2} - \frac{{{y^2}}}{9} = 1\). Tìm điểm \(M \in (H)\) sao cho: M nhìn hai tiêu điểm dưới một góc \({60^0}\).
A.\({M_1}\left( {\sqrt {\frac{{37}}{{10}}} ;\sqrt {\frac{{243}}{{10}}} } \right);{M_2}\left( {\sqrt {\frac{{37}}{{10}}} ; - \sqrt {\frac{{243}}{{10}}} } \right);{M_3}\left( { - \sqrt {\frac{{37}}{{10}}} ;\sqrt {\frac{{243}}{{10}}} } \right);{M_4}\left( { - \sqrt {\frac{{37}}{{10}}} ; - \sqrt {\frac{{243}}{{10}}} } \right)\).
B.\({M_1}\left( {\sqrt {\frac{{243}}{{10}}} ;\sqrt {\frac{{37}}{{10}}} } \right);{M_2}\left( { - \sqrt {\frac{{243}}{{10}}} ;\sqrt {\frac{{37}}{{10}}} } \right);{M_3}\left( {\sqrt {\frac{{243}}{{10}}} ; - \sqrt {\frac{{37}}{{10}}} } \right);{M_4}\left( { - \sqrt {\frac{{243}}{{10}}} ; - \sqrt {\frac{{37}}{{10}}} } \right)\).
C.\({M_1}\left( {2;\sqrt {27} } \right);{M_2}\left( { - 2;\sqrt {27} } \right);{M_3}\left( {2; - \sqrt {27} } \right);{M_4}\left( { - 2; - \sqrt {27} } \right)\).
D.\({M_1}\left( {\sqrt {27} ;2} \right);{M_2}\left( { - \sqrt {27} ;2} \right);{M_3}\left( {\sqrt {27} ; - 2} \right);{M_4}\left( { - \sqrt {27} ; - 2} \right)\).

Các câu hỏi liên quan