Lời giải:
Nhân $4$ vào cả hai vế, phương trình trở thành:
\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)
Vì \((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên
\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)
Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)
Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT