a) Gọi M là trung điểm cạnh CA thì \(M\left(\frac{3}{2};1\right)\) và \(\overrightarrow{BM}=\left(\frac{9}{2};-3\right)\).
Đường trung tuyến BM của tam giác có vec tơ chỉ phương \(\overrightarrow{u}=\frac{2}{3}.\overrightarrow{BM}=\left(3;-2\right)\) suy ra ta có phương trình
\(\frac{x+3}{3}=\frac{y-4}{-2}\)
b) Do đường cao kẻ từ A có phương vuông góc với đường thẳng BC nên nó nhận \(\overrightarrow{BC}=\left(5;-4\right)\) làm vec tơ pháp tuyến. Suy ra có phương trình.
\(5.\left(x-1\right)-4\left(y-2\right)=0\) hay \(5x-4y+3=0\)
c) Ta có \(\overrightarrow{AB}=\left(-4;2\right)=2.\left(-2;1\right)\). Gọi N là trung điểm AC thì N(-1;3)
Đường trung trực của cạnh AB đi qua N(-1;3) và có vec tơ pháp tuyến