\(cos\) Â cos (AB,AC)=\(\dfrac{\left(-8\right)\left(-3\right)+\left(-4\right)\left(-9\right)}{\sqrt{\left(-8\right)^2+\left(-4\right)^2}.\sqrt{\left(-3\right)^2+\left(-9\right)^2}}\) =\(\dfrac{\sqrt{2}}{2}\) vậy Â=(AB,AC)=\(45^o\) cos B(BC,BA)=\(\dfrac{5.8+\left(-5\right).4}{\sqrt{5^2+\left(-5\right)^2}.\sqrt{8^2+4^2}}\) =\(\dfrac{\sqrt{10}}{10}\) cos C (CA,CB)=\(\dfrac{3.\left(-5\right)+9.5}{\sqrt{3^2+9^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{\sqrt{5}}{5}\)