Đáp án:
\(\frac{{x - 3}}{{x - 2}}\)
Giải thích các bước giải:
\(\begin{array}{l}
\frac{{{x^2}}}{{{x^2} - 4}} - \frac{6}{{3x - 6}} + \frac{1}{{x + 2}}\\
= \frac{{{x^2}}}{{(x - 2)(x + 2)}} - \frac{2}{{(x - 2)}} + \frac{1}{{x + 2}}\\
= \frac{{{x^2} - 2(x + 2) + (x - 2)}}{{(x - 2)(x + 2)}}\\
= \frac{{{x^2} - x - 6}}{{(x - 2)(x + 2)}}\\
= \frac{{(x - 3)(x + 2)}}{{(x - 2)(x + 2)}}\\
= \frac{{x - 3}}{{x - 2}}
\end{array}\)