Chứng minh bất đẳng thức: \(a^{^{ }2}+b^2+c^2+\dfrac{3}{4}\ge a+b+c\)
Ta có: \(a^2+\dfrac{1}{4}\ge a\)
Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)
Cộng 3 cái vế theo vế ta được ĐPCM
Đề kiểm tra - Đề 2 - Câu 2 (SBT trang 200)
Cho điểm \(M\left(1;-2\right)\) và đường thẳng \(\Delta\) có phương trình :
\(3x-4y-1=0\)
a) Tìm tọa độ điểm M' đối xứng với M qua đường thẳng \(\Delta\)
b) Viết phương trình đường thẳng \(\Delta'\) đối xứng với \(\Delta\) qua điểm M
c) Viết phương trình đường tròn tâm M và tiếp xúc với đường thẳng \(\Delta\)
Bài 10 (SBT trang 189)
Biết \(\sin\alpha=\dfrac{3}{4}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Tính :
a) \(A=\dfrac{2\tan\alpha-3\cot\alpha}{\cos\alpha+\tan\alpha}\)
b) \(B=\dfrac{\cos^2\alpha+\cot^2\alpha}{\tan\alpha-\cot\alpha}\)
Bài 9 (SBT trang 189)
Tính các giá trị lượng giác của góc \(\alpha\), nếu :
a) \(\cos\alpha=-\dfrac{1}{4},\pi< \alpha< \dfrac{3\pi}{2}\)
b) \(\sin\alpha=\dfrac{2}{3},\dfrac{\pi}{2}< \alpha< \pi\)
c) \(\tan\alpha=\dfrac{7}{3},0< \alpha< \dfrac{\pi}{2}\)
d) \(\cot\alpha=-\dfrac{14}{9},\dfrac{3\pi}{2}< \alpha< 2\pi\)
Bài 8 (SBT trang 189)
Chứng minh rằng với mọi \(\alpha\), ta luôn có :
a) \(\sin\left(\alpha+\dfrac{\pi}{2}\right)=\cos\alpha\)
b) \(\cos\left(\alpha+\dfrac{\pi}{2}\right)=-\sin\alpha\)
c) \(\tan\left(\alpha+\dfrac{\pi}{2}\right)=-\cot\alpha\)
d) \(\cot\left(\alpha+\dfrac{\pi}{2}\right)=-\tan\alpha\)
Đề kiểm tra - Đề 2 - Câu 1 (SBT trang 200)
Cho elip (E0 có phương trình : \(9x^2+25y^2=225\)
a) Tìm tọa độ các tiêu điểm và các đỉnh của (E)
b) Tìm tọa độ các điểm M thuộc (E) sao cho M nhìn hai tiêu điểm \(F_1\) và \(F_2\) của (E) dưới một góc vuông
Bài 7 (SBT trang 189)
Cho \(\pi< \alpha< \dfrac{3\pi}{2}\). Xác định dấu của các giá trị lượng giác sau :
a) \(\cos\left(\alpha-\dfrac{\pi}{2}\right)\)
b) \(\sin\left(\dfrac{\pi}{2}+\alpha\right)\)
c) \(\tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
d) \(\cot\left(\alpha+\pi\right)\)
Bài 6 (SBT trang 182)
Tìm số \(x\left(0\le x< 2\pi\right)\) và số nguyên k sao cho \(a=x+k2\pi\) trong các trường hợp
a) \(a=12,4\pi\)
b) \(a=-\dfrac{9}{5}\pi\)
c) \(a=\dfrac{13}{4}\pi\)
Bài 5 (SBT trang 182)
Cho cung lượng giác AB có số đo là 15 rad. Tìm số lớn nhất trong các số đo của cung lượng giác điểm đầu A, điểm cuối B, có số đo âm ?
Bài 4 (SBT trang 182)
Một hình lục giác đều ABCDEF (các đỉnh lấy theo thứ tự đó và ngược chiều quay của kim đồng hồ) nội tiếp trong đường tròn tâm O. Tính số đo bằng rađian của các cung lượng giác \(AB,AC,AD,AE,AF\) ?
Bài 1 (SBT trang 181)
Đổi số đo của các góc sau ra độ, phút, giây ?
a) \(-4\)
b) \(\dfrac{\pi}{13}\)
c) \(\dfrac{4}{7}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến