Giải phương trình: \(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
Đặt a=\(\sqrt{x^2+1}\)
=>a2=x2+1
Ta có hpt: \(\begin{cases}\left(1+xa\right)\left(a-x\right)=1\\a^2=x^2+1\end{cases}\Leftrightarrow\begin{cases}a-x+xa^2-x^2a=1\\a^2-x^2=1\end{cases}\)
\(\Leftrightarrow\begin{cases}a-x+xa^2-ax^2=1\\a^2-x^2=1\end{cases}\)
=>a-x+xa2-ax2=a2-x2
<=>(a-x)(1+xa-a-x)=0
<=>(a-x)(1-a)(1-x)=0
<=>*a=x *a=1 *x=1
<=>x2+1=x <=>\(\sqrt{x^2+1}\)=1
<=>x2-x+1=0(vô lí) <=>x2+1=1
<=>x2=0
<=>x=0
Vậy S={0;1}
Cho3 số x,y,z dương sao cho tổng của cả 3 số nhỏ hơn hoặc bằng 1. Tìm GTNN của
\((x+\dfrac{1}{y})(y+\dfrac{1}{z})(z+\dfrac{1}{x})\)
cho phương trình (x2-3x+2)(x2-9x+20)=m
a) giải pt với m=4
b)tìm m để p có 4 no pb TM;x12+x22+x23+x24=2x1x2x3x4-30
Tìm bán kính của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng ∆ : 5x + 12y – 10 = 0 .
Cho đường tròn (O; R). Từ 1 điểm A nằm ngoài đường tròn, kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đường thẳng BO cắt đường thẳng AC tại D.
a) Chứng minh rằng BC vuông góc với OA
b) Chứng minh rằng DC.DA=DO.DB
c) Đường thẳng vuông góc với BD tại O, cắt AD tại M. Chứng minh rằng \(\frac{AB}{AM}-\frac{AM}{DM}=1\)
Bài 2 (GSK trang 156)
Nêu định nghĩa của \(\tan\alpha,\cot\alpha\) và giải thích vì sao ta có :
\(\tan\left(\alpha+k\pi\right)=\tan\alpha;k\in Z\)
\(\cot\left(\alpha+k\pi\right)=\cot\alpha,k\in Z\)
Bài 7 (GSK trang 155)
Biến đỏi thành tích các biểu thức sau :
a) \(1-\sin x\)
b) \(1+\sin x\)
c) \(1+2\cos x\)
d) \(1-2\sin x\)
trên đường thẳng (d) : x-y+2=0 , tìm điểm M cách đều 2 điểm E(0,4) và F(4,-9).
cho đường thẳng (d) có phương trình tổng quát : 2x-y+3=0 và đi qua M(3,1) . tìm M' là điểm đối xứng với M qua (d) .
1/a+b+c +1/b+c+1/a+c+1<1 với abc=1 và a,b,c dương
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)với a,b,c>0 và ab+bc+ca=3
Cô mình nói quy đồng và đưa về cái khác rồi cm nó luôn đúng.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến