Cho a, b, c là 3 số thực thỏa mãn điều kiện \(a^3>36\) và \(abc=1\)
Xét tam thức bậc hai : \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}\)
a) Chứng minh rằng \(f\left(x\right)>0;\forall x\)
b) Từ câu a) suy ra \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Lời giải
a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)
\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)
\(\Delta=\dfrac{-a^3+36}{3a}\)
\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)
\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm
b)
\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)
\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)
Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm
Giúp vs ak :
giải và biện luận pt :
\(\frac{x+ab}{a+1}+\frac{x+bc}{c+1}+\frac{x+b^2}{b+1}=3b\left(a,b,ce-1\right)\)
Xét dấu các tam thức bậc hai
a) 5x2 – 3x + 1; b) - 2x2 + 3x + 5;
c) x2 + 12x + 36; d) (2x - 3)(x + 5).
Giá trị nguyên lớn nhất của thỏa mãn bất phương trình: \(\frac{x+5}{7}-\frac{x}{2}>x-\frac{6+x}{3}\)là x=
LỚP 10 : HÌNH HỌC
CHƯƠNG 2 :TÍCH VÔ HƯỚNG CỦA HAI VECTƠ .
Bài 1 : Trong hệ tọa độ oxy . Cho 3 điểm A ( -1 ; 1 ) , B ( 1 ; 3 ) , C ( 1 ; -1 ) .
a> CM : 3 điểm ABC không thẳng hàng .
b> Tìm tọa độ trọng tâm tam giác ABC .
c> Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành .
d>CM : tam giác ABC vuông cân tại A .
e>Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A .
g> Tìm tọa độ điểm M nằm trên trục hoành sao cho tam giác OMA cân tại O .
Giải hệ bất phương trình sau
\(\begin{cases}x^2-3x+2\ge0\\x^2-x-12\le0\\8-2x^2\le0\end{cases}\)
Chứng minh rằng M không là số tự nhiên với a, b, c, d là các số tự nhiên
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}\)
Những bạn ôn thi đại học 2017 nên chứng minh những tính chất như này:
\(\Delta ABC\) nội tiếp đường tròn tâm I, D là điểm chính giữa cung BC không chứa A. \(P=AB\cap CD\). BC cắt đường tròn ngoại tiếp \(\Delta APC\) tại Q, gọi K, X lần lượt là tâm đường tròn ngoại tiếp \(\Delta APC,\Delta PKQ\) Khi đó:
a) qua P kẻ đương thẳng song song với BC cắt đường tròn ngoại tiếp \(\Delta APC\) tại E, chứng minh: tứ giác QPEC là là hình thang cân và \(IC\perp EC\) (gợi ý: chứng minh L, I, C thẳng hàng với L đối xứng với E qua K, L\(\in\)đường tròn ngoại tiếp \(\Delta APC\))
b) tiếp tuyên tại P của đườngtròn ngoại tiếp \(\Delta PKQ\) song song với BC hay \(PX\perp BC\)
c) PK là phân giác \(\widehat{QPE}\)
I Q P E D C K X A L B
giải hệ phương trình sau
\(\begin{cases}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{cases}\)
Bài 2.48 (SBT trang 104)
Tam giác ABC có \(\widehat{B}=60^0;\widehat{C}=45^0;BC=a\). Tính độ dài hai cạnh AB và AC ?
Bài 18 (SBT trang 165)
Cho bảng phân bố tần số
Khối lượng 30 quả trứng gà của một rổ trứng gà
a) Tính số trung bình, số trung vị, mốt
b) Hãy chọn giá trị đại diện cho các số liệu thống kê đã cho về quy mô và độ lớn
c) Giả sử có rổ trứng gà thứ hai có \(\overline{x_2}=36,5g;s_2=10g\), hãy xét xem trứng gà ở rổ nào có khội lượng đều hơn ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến