Lập phương trình các đường phân giác của các góc giữa hai đường thẳng :
\(\Delta_1:2x+4y+7=0\)
\(\Delta_2:x-2y-3=0\)
Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)
\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)
\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)
\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)
* \(2x+4y+7=2\left(x-2y-3\right)\)
\(\Rightarrow8y+13=0\)
*\(2x+4y+7=-2\left(x-2y-3\right)\)
\(\Rightarrow4x+1=0\)
Bài 3.11 (SBT trang 144)
Tính bán kính của đường tròn có tâm là điểm \(I\left(1;5\right)\) và tiếp xúc với đường thẳng \(\Delta:4x-3y+1=0\) ?
cho d1:x +2y +m +0 và d2:mx+(m+1)y+1=0 . có 2 giá trị của m để d1 và d2 hợp với nhau 1 góc 45 độ . tính tích của chúng
giải phương trình
3\(\sqrt{2x-1}\)+x\(\sqrt{5-4x^2}\)=4x2
Cho a,b,c là các số thực dương thoả mãn
\(a+b+c+\sqrt{2abc}\ge10\)
Chứng minh rằng:
\(S=\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}+\sqrt{\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}}+\sqrt{\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}}\ge6\sqrt{6}\)
Tam giác cân ABC. Cạnh đáy BC có pt 4x+3y+1=0 cạnh bên AC có pt 2x-y+3=0. Cạnh bên AB đi qua M(2;1). Viết pt AB
1. viết phương trình tổng quát của đt sao cho: đt đi qua điểm I(3;1) và cắt các trục Ox, Oy lần lượt tại C và D để cho tam giác CDE cân tại E với E(2;-2)
2. lập phương trình đt đối xứng với đt d: x-2y-5=0 qua A(2;1)
Tính diện tích hình vuông có 2 cạnh nằm trên 2 đường thẳng (d): \(-2x+y-3=0\) và (I): \(2x-y=0\)
Cho tam giác ABC vuông tại A có đường cao AH , biết AB=8, BH=4.Độ dài cạnh BC là
Giúp mình với mọi người ơi. Rút gọ hay ra số ấy ạ. Cảm ơn mọi người nhiều
B= cosx + cos3x + cos5x
Tính qía trị biểu thức:
\(A=\dfrac{x+y}{z}+\dfrac{x+z}{y}+\dfrac{y+z}{x}\) nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến