Cho ba điểm A, B, C cố định và thẳng hàng theo thứ tự đó. Vẽ đường tròn (O; R) bất kỳ đi qua B và C (BC < 2R). Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Gọi I là trung điểm của BC.
a) Chứng minh năm điểm A, M, O, I, N cùng thuộc một đường tròn.
b) Gọi J là tâm đường tròn nội tiếp tam giác MBC, E là giao điểm thứ hai của đường thẳng MJ với đường tròn (O). Chứng minh FB = EC = EJ.
c) Khi đường tròn (O) thay đổi, gọi K là giao điểm của OA và MN. Chứng minh tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc một đường thẳng cố định.
A.
B.
C.
D.

Các câu hỏi liên quan