Cho \(A\) là điểm cố định trên đường tròn \(\left( {O;R} \right).\) Gọi \(AB\) và \(AC\) là hai dây cung thay đổi trên đường tròn \(\left( O \right)\) thỏa mãn \(\sqrt {AB.AC} = R\sqrt 3 .\) Khi đó vị trí của \(B,\,C\) trên \(\left( O \right)\) để diện tích \(\Delta ABC\) lớn nhất là:
A.\(\Delta ABC\) cân                         
B.     \(\Delta ABC\) đều.                    
C.   \(\Delta ABC\) vuông cân            
D.  \(\Delta ABC\) vuông

Các câu hỏi liên quan