Đáp án:
\(m = 1\)
Giải thích các bước giải:
\(\begin{array}{l}y = {x^4} - 2m{x^2} + 2m - 3\\y' = 4{x^3} - 4mx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\end{array}\)
Hàm số có ba điểm cực trị \( \Leftrightarrow m > 0\).
Khi đó đồ thị có điểm cực đại \(A\left( {0;2m - 3} \right)\) và các điểm cực tiểu \(B\left( {\sqrt m ; - {m^2} + 2m - 3} \right),C\left( { - \sqrt m ; - {m^2} + 2m - 3} \right)\)
Ba điểm \(A,B,C\) lập thành tam giác vuông thì \(AB \bot AC \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0\)
\( \Leftrightarrow \sqrt m .\left( { - \sqrt m } \right) + \left( { - {m^2}} \right).\left( { - {m^2}} \right) = 0\)
\( \Leftrightarrow - m + {m^4} = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\left( {loai} \right)\\m = 1\left( {TM} \right)\end{array} \right.\)
Vậy \(m = 1\)