tìm nghiệm (x;y) với x là số nguyên dương của pt sau
\(\sqrt{20-8x}+\sqrt{6x^2-y^2}=y\sqrt{7-4x}\)
Đk x \(\le\dfrac{7}{4}\) và y2 \(\le6x^2\)
Vì x \(\in Z^+\) => x = 1
Thay x = 1 ta có 2\(\sqrt{3}\) + \(\sqrt{6-y^2}\) = \(\sqrt{3}y\)
<=> \(\sqrt{6-y^2}\) = \(\sqrt{3}\left(y-2\right)\) (Đk y \(\ge2\) )
<=> 6 - y2 = 3(y2 - 4y +4)
<=> 4y2 - 12y + 6 = 0
<=> 2y2 - 6y + 3 = 0
<=> y = \(\dfrac{3\pm\sqrt{3}}{2}\)
Vì y \(\ge2\) => y = \(\dfrac{3+\sqrt{3}}{2}\)
Vậy x = 1 y = \(\dfrac{3+\sqrt{3}}{2}\)
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh:
\(a.\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\)
\(b.\overrightarrow{AM}=\overrightarrow{NB}+\overrightarrow{PC}\)
Tìm số nguyên n sao cho (3n+1) chia hết chp (n_1)
cho a,b,c>0 và abc=1. chứng minh rằng
\(\dfrac{1}{2a^2+1}+\dfrac{1}{2b^2+1}+\dfrac{1}{2c^2+1}\le1\)
Tìm min của A= 2 - \(\dfrac{x+1}{x^2}\) với x > -1
Chứng minh các bất đẳng thức sau:
a/ \(ab\le\left(\dfrac{a+b}{2}\right)^2\)
b/ \(x^4+3\ge4x\)
Mn tốt, giúp mình nhé! Gấp đấy
cho hình thag abcd có 2 đáy là ab và cd thỏa: ab=2cd. Vẽ véctơ CI = véctơ DA
a. Cm: I là trung điểm AB và véctơ DI = véctơ CD
b. Cm: véctơ AI = véctơ IB = vecto DC.
Cho mik thanks trc nhá!!
1 mảnh vườn HCN có 2 kích thước là 40m và 60m . cần tạo 1 nối đi quanh vườn có chiều rộng như nhau sao cho diện tích còn lại 1500m2( hình vẽ) . hỏi chiều rộng mảnh vườn là bao nhiêu?
1500m 2
Chứng minh đẳng thức :
sin2α.tanα + cos2α.cotα+2sinα.cosα = tanα+cotα
Mọi người giúp em với ạ !!
giải hộ mình hpt này nha:
(x + căn tất cả x^2+3)(y + căn tất cả y^2+3)=3. tính giá trị của x+y và x^3 + y^3
Bài 1 : cho hình bình hành ABCD dựng : \(\overrightarrow{AM}\)= \(\overrightarrow{BA}\) ;\(\overrightarrow{MN}\)=\(\overrightarrow{DA}\) ; \(\overrightarrow{NP}\)= \(\overrightarrow{DC}\); \(\overrightarrow{PQ}\)= \(\overrightarrow{BC}\)
CHỨNG MINH \(\overrightarrow{AQ}\)= \(\overrightarrow{0}\)
bài 2 : cho tam giác ABC bên ngoài các hình bình hành vẽ ABÌ; BCPQ; CARS . CHỨNG MINH : \(\overrightarrow{RF}\)+\(\overrightarrow{IQ}\)+\(\overrightarrow{PS}\)= \(\overrightarrow{0}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến