cho \(a>0 ;b>0\) và \(a+b=1\). Tìm GTNN \(S=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)
\(S=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=\dfrac{a+1}{a}.\dfrac{b+1}{b}\)
\(=\dfrac{a+a+b}{a}.\dfrac{b+a+b}{b}=\dfrac{2a+b}{a}.\dfrac{a+2b}{b}\)
\(=\dfrac{2a^2+4ab+ab+2b^2}{ab}=\dfrac{2\left(a^2+2ab+b^2\right)}{ab}+\dfrac{ab}{ab}\)
\(=\dfrac{2}{ab}+1\)
Ta có \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2+2ab\ge0\Rightarrow2ab\le a^2+b^2\)
\(\Rightarrow4ab\le\left(a+b\right)^2=1\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{2}{ab}\ge8\Rightarrow\dfrac{2}{ab}+1\ge9\)
hay S>=9
Dấu = xảy ra khi a=b=1/2
vậy minS=9 khi a=b=1/2
Bài 1: Cho a,b,c>0 thỏa mãn : a+b+c=3.
Chứng minh rằng: \(\dfrac{a^2}{a+b^2}\)+ \(\dfrac{b^2}{b+c^2}\)+ \(\dfrac{c^2}{c+a^2}\) ≥ \(\dfrac{3}{2}\)
Bài 2: Tìm giá trị lớn nhất của biểu thức với x ≥ 0 ; x ≤ \(\dfrac{4}{3}\)
A= 4x3 - 3x2
Bài 3: Cho a,b,c > 0. Chứng minh rằng:
3( ab + bc + ca ) ≤ ( a+ b + c )2
Cho 3 số dương a,b,c tm: a+b+c+ab+ca+bc=6abc
CMR: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{3}\)
@Lightning Farron
Cho a,b,c là số dương thỏa mãn a+b+c=3. CMR
a/ \(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge\dfrac{3\sqrt{2}}{2}\)
b/ \(\sqrt{\dfrac{a^3}{b+3}}+\sqrt{\dfrac{b^3}{c+3}}+\sqrt{\dfrac{c^3}{a+3}}\ge\dfrac{3}{2}\)
gpt \(\sqrt{2-x}+\sqrt[3]{2x^2+6x+3}=-2\)
Chứng minh các BĐT sau:
a. \(9\left(\dfrac{1}{a+2b}+\dfrac{2}{b+2c}+\dfrac{3}{c+2a}\right)\le\dfrac{7}{a}+\dfrac{4}{b}+\dfrac{7}{c}\)
b. \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\ge\dfrac{3}{a+b}+\dfrac{18}{3b+4c}+\dfrac{9}{c+6a}\)
c. \(\dfrac{b+c}{a}+\dfrac{2a+c}{b}+\dfrac{4\left(a+b\right)}{a+c}\ge9\)
Cho a,b,c dương sao cho \(a^2+b^2+c^2=3\) . Chứng minh rằng
a/ \(\dfrac{a^3b^3}{c}+\dfrac{b^3c^3}{a}+\dfrac{c^3a^3}{b}\ge3abc\)
b/ \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge3\)
Giải các phương trình sau
a/ \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2\)
b/ \(\sqrt[3]{5x+7}-\sqrt[3]{5x-13}=1\)
c/ \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)
2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:
\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)
4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.
Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)
5) Chứng minh rằng:
\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)
6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)
Tìm GTLN của b sao cho bđt sau đúng:
\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)
7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)
8) Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)
Tìm tất cả số nguyên p sao cho \(2x^2-(p-1)x+p+2018=0 \) có tất cả là nghiệm nguyên
Cho phương trình sau với p là tham số:
\(3x^2-(2p-1)x+p^2-6p+11=0\)
Tìm p để phương trình có ít nhất một nghiệm nguyên
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến