cho a >0 b>0 c>0 chúng minh :
\(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a3}\ge\dfrac{a^3}{b}+\dfrac{b^5}{c}+\dfrac{c^3}{a}\)
giúp mik với cần gấp
Giờ mới rảnh sorry :(
Theo BĐT Cauchy-Schwarz (Bunhia hay B.C.S hay Schwarz hay Cauchy-)
\(\left(ab+bc+ca\right)\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)^2\)
Cần chỉ ra \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\left(1\right)\)
Tiếp tục dùng C-S dạng Engel (hoặc Schwarz hay C-S dạng phân thức hay Svasc...)
\(VT_{\left(1\right)}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge ab+bc+ca=VP_{\left(1\right)}\)
BĐT trên đúng nên ta có ĐPCM
\("=" \Leftrightarrow a=b=c\)
Chứng minh rằng nếu \(a\ge4\) , \(b\ge5\), \(c\ge6\) và \(a^2+b^2+c^2=90\)thì \(a+b+c\ge16\)
Xác định hàm số y=ax2+bx+2 biết (P) đi qua B(-1;6) và có tung độ đỉnh là -1/4
tìm các cặp số nguyên (a,b) sao cho
a, \(\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
b, \(\dfrac{a}{4}-\dfrac{1}{2}=\dfrac{3}{b}\)
giúp mk nhé các bạn
phat bieu dinh li hai goc doi dinh
\(\left\{{}\begin{matrix}X+2y=5\\^{ }X^2+2y^2-2xy=5\end{matrix}\right.\)
ngiệm của phương trình căn của x+3 - căn của x-1 =2
tích cac ngiem cua phuong trinh can x+3 - can 2x-8 = can 7-x
CM: \(\dfrac{1}{a\left(b+1\right)}+\dfrac{1}{b\left(c+1\right)}+\dfrac{1}{c\left(a+1\right)}\ge\dfrac{3}{1+abc}\) với a,b,c \(\ge\) 1. Help!
Cho a,b,c là số dương thỏa mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng
a/ \(a^2b+b^2c+c^2a\le3\)
b/ \(\dfrac{ab}{3+c^2}+\dfrac{bc}{3+a^2}+\dfrac{ca}{3+b^2}\le\dfrac{3}{4}\)
cho tam giác ABC. gọi M là trung điểm BC, N là trung điểm BM
Hãy phân tích vecto\(\overrightarrow{AN}\) theo \(\overrightarrow{AB}và\overrightarrow{AC}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến