cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
Từ \(a^2+b^2+c^2=3\Rightarrow a+b+c\le3\)
Ta có: \(\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\)
\(\ge\sqrt{9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(\ge\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)
Cần chứng minh \(\sqrt{9\cdot\left(\dfrac{9}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\ge\dfrac{3\sqrt{13}}{2}\)
\(\Leftrightarrow9\left(\dfrac{9}{2t}\right)^2+t^2\ge\dfrac{117}{4}\left(t=a+b+c\le3\right)\)
\(\Leftrightarrow\dfrac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)*Đúng*
Cho a,b,c dương thỏa mãn a+b+c=3
Tìm GTNN của P=\(\sqrt{\dfrac{a+b}{2ab}}+\sqrt{\dfrac{b+c}{2bc}}+\sqrt{\dfrac{c+a}{2ca}}\)
Cho a,b,c dương thỏa mãn abc=1
Tìm GTNN của P=\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\)
Cho a,b,c dương. CMR \(1+\dfrac{3}{ab+bc+ca}\ge\dfrac{6}{a+b+c}\)
Cho a,b,c dương thỏa mãn a+b+c=1
Tìm GTLN của P=\(\dfrac{ab}{\sqrt{c+ab}}+\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}\)
CMR: 3x^2 + 4y^2 + 4x + 2 >= 4xy
Cho em hỏi bài này ạ!!!
7x÷73=49
tìm m để pt ((x-1)*(mx+2))/x-2=0
Cho x,y,z dương thỏa mãn ab+bc+ca=1
Tìm GTLN của P=\(\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Chứng minh biểu thức sau độc lập với x: \(\frac{\tan ^2x-\cos ^2x}{\sin ^2x}+\frac{\cot ^2x-\sin ^2x}{\cos ^2x}\)
Với các số dương a,b,c sao cho \(\dfrac{a}{1+b}+\dfrac{b}{1+c}+\dfrac{c}{1+a}=1\)
Tìm GTNN của P=\(\left(\dfrac{1+b}{a}-1\right)\left(\dfrac{1+c}{b}-1\right)\left(\dfrac{1+a}{c}-1\right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến