Cho Elip \((E):\,\,\,{{{x^2}} \over {100}} + {{{y^2}} \over {36}} = 1\). Tọa độ điểm \(M \in (E)\) sao cho \(M{F_2} = 4M{F_1}\) là:
A.\({M_1}\left( { - {{15} \over 2};{{3\sqrt 7 } \over 2}} \right)\,\,\,,\,\,\,{M_2}\left( { - {{15} \over 2}; - {{3\sqrt 7 } \over 2}} \right)\)
B.\({M_1}\left( {{{15} \over 2};{{3\sqrt 7 } \over 2}} \right)\,\,\,,\,\,\,{M_2}\left( {{{15} \over 2}; - {{3\sqrt 7 } \over 2}} \right)\)
C.\({M_1}\left( {{{15} \over 2};{{\sqrt 7 } \over 2}} \right)\,\,\,,\,\,\,{M_2}\left( {{{15} \over 2}; - {{\sqrt 7 } \over 2}} \right)\)
D.\({M_1}\left( { - 1;2} \right)\,\,\,,\,\,\,{M_2}\left( { - 1; - 2} \right)\)