1 nhóm gồm 8 nam 11 nữ đi cắm trại hỏi có bao nhiêu cách chia ra làm 2 đội một đội có 10 người đội kia có 9 người sao cho mỗi đội có ít nhất 5 nữ
Khi chọn 1 nhóm thì nhóm kia hoàn toàn xác định (vì là những người còn lại).
Sậy số cách chia hai nhóm bằng số cách chọn ra 1 nhóm có 9 người hoặc 10 người, trong đó có 5 hoặc 6 nữ.
Ta có:
-Số cách chọn 10 người, trong đó có 5 nữ bằng số cách chọn 5 nam từ 8 nam và 5 nữ từ 11 nữ và bằng \(C_8^5.C_{11}^5\)
-Số cách chọn 9 người, trong đó có 5 nữ bằng số cách chọn 4 nam từ 8 nam và 5 nữ từ 11 nữ và bằng \(C_8^4.C_{11}^5\)
-Số cách chọn 10 người, trong đó có 6 nữ bằng số cách chọn 4 nam từ 8 nam và 6 nữ từ 11 nữ và bằng \(C_8^4.C_{11}^6\)
-Số cách chọn 9 người, trong đó có 6 nữ bằng số cách chọn 3 nam từ 8 nam và 6 nữ từ 11 nữ và bằng \(C_8^3.C_{11}^6\)
Tổng số cách chọn là: \(C_8^5.C_{11}^5\)+ \(C_8^4.C_{11}^5\)+ \(C_8^4.C_{11}^6\) + \(C_8^3.C_{11}^6\)
Tìm hệ số của \(x^2\) trong khai triển thành đa thức của biểu thức \(P=\left(x^2+x-1\right)^6\)
Cho các số x,y,z thỏa mãn:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4};2x+3y-z=95\)
Khi đó, x+y+z bằng bao nhiêu?
\(Giiphươngtrình:\frac{\sqrt{3}}{COS^2X}+\frac{4+2SIJ2X}{SIN2X}-2\sqrt{3}=2\left(COTX+1\right)\)
Cho tam giác ABC. Xét điểm M trên tian AB, điểm N trên tia AC sao cho AB = m và AC = (m+1). AN với m>0 nào đó. Chứng minh rằng các đường thẳng MN luôn đi qua một điểm cố định
Trên các cạnh BC, CA, AB của tam giác ABC tương ứng lấy các điểm A1, B1, C1. Gọi Ga, Gb, Gc theo thứ tự là trọng tâm các tam giác AB1C1, C1A1B, A1B1C và G, G1, G2 là trọng tâm của các tam giác ABC, A1B1C1, GaGbGc theo thứ tự đó. Chứng minh rằng G, G1, G2 thẳng hàng.
sinx+cosx+3sinxcosx-1=0
6. Tìm s
a) s - \(\frac{20}{11\times13}-\frac{20}{13\times15}-\frac{20}{15\times17}--.-\frac{20}{53\times55}=\frac{3}{11}\)
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{39}+...+\frac{2}{s\left(s+1\right)}=\frac{2}{9}\)
( Toàn lớp 6 nha )
Tìm giới hạn : \(\lim\limits_{x\rightarrow2}\frac{x^2-5x+6}{x^3-x^2-x-2}\)
Trong mặt phẳng cho góc xOy và một điểm A cố định. Một đường tròn \(\omega\) đi qua O và A cắt tại các tia Ox, Oy theo thứ tự tại M, N. Chứng minh rằng khi \(\omega\) thay đổi, trung điểm MN luôn nằm trên một đường thẳng cố định
Giải phương trình sin2x-cos2x+5sinx-cosx-2=0
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến