Cho hình bình hành ABCD. Gọi M và N theo thứ tự là trung điểm của các cạnh AB và CD. Lấy P thuộc CM và Q thuộc AN sao cho AQ : QN = CP:PM=2:1. Chứng minh rằng B,D,P và Q thẳng hàng.
Từ giả thiết suy ra \(\overrightarrow{PC}=-2\overrightarrow{PM}\) , \(\overrightarrow{QA}=-2\overrightarrow{QN}\) , \(\overrightarrow{BA}=2\overrightarrow{BM}\) và \(\overrightarrow{DC}=2\overrightarrow{DN}\)
Đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) ta có \(\overrightarrow{BD}=\overrightarrow{a}+\overrightarrow{c}\) và