Bài 1:
a, \(A=4x^2+4x+1\)
\(A=4x^2+2x+2x+1\)
\(A=2x.\left(2x+1\right)+\left(2x+1\right)\)
\(A=\left(2x+1\right)^2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+1\right)^2\ge0\)
Hay \(A\ge0\) với mọi giá trị của \(x\in R\).
Để \(A=0\)thì \(\left(2x+1\right)^2=0\Rightarrow2x=-1\Rightarrow x=\dfrac{-1}{2}\)
Vậy-.
b, \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(B=\left[\left(x-1\right).\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(B=\left(x^2+6x-x+6\right).\left(x^2+3x+2x+6\right)\)
\(B=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)
\(B=\left(x^2+5x+6\right)^2\)
\(B=\left(x^2+2,5x+2,5x+6,25-0,25\right)^2\)
\(B=\left[\left(x+2,5\right)^2-0,25\right]^2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2,5\right)^2\ge0\Rightarrow\left(x+2,5\right)^2-0,25\ge-0,25\)
\(\Rightarrow\left[\left(x+2,5\right)^2-0,25\right]^2\ge0,0625\)
Hay \(B\ge0,0625\) với mọi giá trị của \(x\in R\).
Để \(B=0,0625\) thì \(\left[\left(x+2,5\right)^2-0,25\right]^2=0,0625\)
\(\Rightarrow\left(x+2,5\right)^2-0,25=0,25\)
\(\Rightarrow x+2,5=0\Rightarrow x=-2,5\)
Vậy-...
Câu c làm tương tự!! Chúc bạn học tốt!!!