Tích phân $I=\int\limits_{1}^{\sqrt[4]{3}}{\frac{1}{x({{x}^{4}}+1)}dx}$ bằng A. $\frac{1}{4}\ln \frac{3}{2}.$ B. $\frac{1}{2}\ln \frac{3}{2}.$ C. $\frac{1}{4}\ln \frac{2}{3}.$ D. $\frac{1}{4}.$
Đáp án đúng: A Đặt $t={{x}^{2}}=>dt=2xdx.$ khi đó $\begin{array}{l}I=\frac{1}{2}\int\limits_{1}^{\sqrt{3}}{\frac{t}{{{t}^{2}}\left( {{t}^{2}}+1 \right)}dt}=\left. \frac{1}{4}\ln \frac{{{t}^{2}}}{{{t}^{2}}+1} \right|_{1}^{\sqrt{3}}\\=\frac{1}{4}\ln \frac{3}{2}.\end{array}$