tính đạo hàm của mỗi hàm số sau :
a) y=\(\dfrac{1}{\left(x^2-x+1\right)^5}\) ; b) y=\(x^2+x\sqrt{x}+1\) ; c) y=\(\sqrt{\dfrac{x^2+1}{x}}\)
a : \(y=\dfrac{1}{\left(x^2-x+1\right)^5}=\left(x^2-x+1\right)^{-5}\)
\(\Rightarrow y'=-5\left(2x-1\right)\left(x^2-x+1\right)^{-6}=\dfrac{5-10x}{\left(x^2-x+1\right)^6}\)
b: \(y=x^2+x^{\dfrac{3}{2}}+1\Rightarrow y'=2x+\dfrac{3}{2}x^{\dfrac{1}{2}}=2x+\dfrac{3\sqrt{x}}{2}\)
\(y=\sqrt{\dfrac{x^2+1}{x}}=\left(\dfrac{x^2+1}{x}\right)^{\dfrac{1}{2}}\Rightarrow y'=\dfrac{1}{2}\left(\dfrac{x^2+1}{x}\right)'\left(\dfrac{x^2+1}{x}\right)^{\dfrac{-1}{2}}=\dfrac{x^2-1}{2x^2}\times\dfrac{1}{\sqrt{\dfrac{x^2+1}{x}}}=\dfrac{x^2-1}{2x^2\sqrt{\dfrac{x^2+1}{x}}}\)
cho y=\(\dfrac{2x-1}{x-1}\) (h)
a) viết pt tiếp tuyến với (h) tại A có tung độ = 3
b) viết pt tiếp tuyến với (h) biết tiếp điểm của tiếp tuyến cách M(0,1) một khoảng =2
c) tìm trên (h) sao cho khoảng cách từ điểm đó đến K(0,2) bằng 4
d) tìm \(x\) biết y' >= 3
Bài 2.16 (Sách bài tập trang 203)
Cho hàm số \(f\left(x\right)=x-2\sqrt{x^2+12}\)
Giải bất phương trình \(f'\left(x\right)\le0\) ?
tìm đạo hàm của mỗi hàm số sau :
a) y=\(\dfrac{1+x}{\sqrt{1-x}}\) ; b)y=\(\dfrac{x}{\sqrt{a^2-x^2}}\)
cho dãy số (un) với un=\(\frac{n}{3^n}\).
a)chứng minh rằng \(\frac{u_{n+1}}{u_n}\le\frac{2}{3}\) với mọi n .
b) bằng phương pháp quy nạp , chứng minh rằng 0≤un≤\(\left(\frac{2}{3}\right)^n\) với mọi n
Bài 4.8 (Sách bài tập trang 126)
Ba số khác nhau có tổng bằng 114 có thể coi là ba số hạng liên tiếp của một cấp số nhân, hoặc coi là số hạng thứ nhất, thứ tư và thứ hai mươi lăm của một cấp số cộng. Tìm các số đó ?
Bài 4.3 (Sách bài tập trang 125)
Tìm số các số hạng của cấp số nhân \(\left(u_n\right)\) biết :
a) \(q=2\) \(u_n=96\) \(S_n=189\)
b) \(u_1=2\) \(u_n=\dfrac{1}{8}\) \(S_n=\dfrac{31}{8}\)
Bài 4.4 (Sách bài tập trang 125)
Tìm số hạng đầu và công bội của cấp số nhân \(\left(u_n\right)\) biết :
a) \(\left\{{}\begin{matrix}u_5-u_1=15\\u_4-u_2=6\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_2-u_4+u_5=10\\u_3-u_5+u_6=20\end{matrix}\right.\)
Bài 4.9 (Sách bài tập trang 126)
Cho cấp số nhân \(a,b,c,d\). Chứng minh rằng :
a) \(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=a^3+b^3+c^3\)
b) \(\left(ab+bc+cd\right)^2=\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)
Độ dài các cạnh của một tam giác ABC lập thành một cấp số nhân. Chứng minh rằng tam giác ABC có 2 góc không quá \(60^0\)
Một cấp số nhân có 5 số hạng, công bội \(q=\frac{1}{4}\) số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm cấp số nhân đó ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến