`a) x(x^2-6) - (x-2)^2 = (x+1)^3`
`<=>x^3-6x-x^2+4x-x=x^3+2x^2+x+x^2+2x+1`
`<=>x^3-2x-x^2-4=x^3+3x^2+3x+1`
`<=>2x+x^2+4+3x^2+3x+1=0`
`<=>5x+4x^2+5=0`
`(x^2-3x+5)/((x-3)(x+2)) = 1/(x-3)`
`<=>x^2-3x+5-x-2=0 `
`<=>x^2-4x+3=0`
`<=>(x-3)(x-1)=0`
`<=>x=3` hoặc `x=1`
`2x/(x-2) - x/(x+4) = (8x+8)/((x-2)(x+4))`
`<=>2x(x+4)-x(x-2)=8(x+1)`
`<=>x^2+10=8x+8`
`<=>(x-2)(x+4)=0`
`<=>x=2(l)` hoặc `x=-4(l)`
`(x+1)^3 - x + 1 = (x-1)(x-2)`
`<=>x^3+3x^2+2x+2=x^2-2x-x+2`
`<=>x^3+3x^2+2x-x^2+3x=0`
`<=>x(x^2+2x+5)=0`
`<=>x=0`