Đáp án:
a) AD
b) AB
c) A
Giải thích các bước giải:
a) Ta có: \(\left( {MBC} \right) \equiv \left( {ABCD} \right)\).
\(\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\).
Vậy \(\left( {SAD} \right) \cap \left( {MBC} \right) = AD\).
b) Ta có: \(\left( {MNO} \right) \equiv \left( {ABCD} \right)\)
\(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\).
Vậy \(\left( {SAB} \right) \cap \left( {MNO} \right) = AB\).
c) Ta có:
\(\left\{ \begin{array}{l}A \in MC\\A \in \left( {SAB} \right)\end{array} \right. \Rightarrow A = MC \cap \left( {SAB} \right)\)