Đáp án:
\(
\left\{ {\begin{array}{*{20}c}
{x \ne \pm 2} \\
\begin{array}{l}
x \ne 1 \\
x \ne 3 \\
\end{array} \\
\end{array}} \right.
\)
Giải thích các bước giải:
\(
\begin{array}{l}
\frac{1}{{x^2 - 4}} \le \frac{{2x}}{{x^2 - 4x + 3}} \\
Dkxd:\left\{ {\begin{array}{*{20}c}
{x^2 - 4 \ne 0} \\
{x^2 - 4x + 3 \ne 0} \\
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}c}
{(x - 2)(x + 2) \ne 0} \\
{(x - 3)(x - 1) \ne 0} \\
\end{array}} \right. \\
\Leftrightarrow \left\{ {\begin{array}{*{20}c}
{x \ne \pm 2} \\
\begin{array}{l}
x \ne 1 \\
x \ne 3 \\
\end{array} \\
\end{array}} \right. \\
\end{array}
\)