Sử dụng hằng đẳng thức để thực hiện các phép tính sau
A,(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
B,(a+2b-3c-d)(a+2b+3c+d)
C, (1-x-2x^3+3x^2)(1-x+2x^3-3x^2)
D,(a^6-3a^3+9)(a^3+3)
A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)
A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)
A =(a^4-1)(a^4-16)
A =\(a^{16}-16\cdot a^4-a^4+16\)
A =\(a^{16}-17\cdot a^4+16\)
B=(a+2b-3c-d)(a+2b+3c+d)
B=[(a+2b)^2 - (3c +d)^2]
B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]
B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2
C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)
C=[(1-x)^2-(2x^3-3x^2)^2]
C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]
C=[1-2x-x^2-4x^6+12x^5-9x^4]
C=-4x^6+12x^5-9x^4-x^2-2x+1
D=(a^6-3a^3+9)(a^3+3)
D=a^9+27
Tìm GTNN của biểu thức
C=2x^2+2x+1
Tìm giá trị nhỏ nhất của:
13x2 + y2 - 4xy - 16x + 2y + 2022
Tìm GTLN của biểu thức: 4x -x2 +3
Tìm GTNN của biểu thức: C =x2 -4xy +5y2 +10x -22y +28
Chứng minh luôn dương với mọi x
(x-8)(x-10)+3
a, CMR nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b, Cho a,b,c khác 0, thỏa mãn a+b+c= abc và 1/a+1/b+1/c=2. CMR 1/a^2+ 1/b^2+1/c^2= 2
Tìm GTNN của biểu thức: 4a2 +4a +2
Cho a, b, c là các số thực thỏa mãn: ab + ac + bc = abc và a + b + c = 1. CMR: ( a - 1 )( b - 1 )( c - 1 ) = 0.
1. Tìm giá trị nhỏ nhất của biểu thức 4x2 + 4x + 3
2. Tìm giá trị lớn nhất của biểu thức -x2 + 4x + 1
Tính \(S=1+2+2^2+...+2^{10}\).
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến