Cho hai hình bình hành ABCD và EBEF với A, D, F không thẳng hàng. Dựng các vectơ \(\overrightarrow{EH}\) và \(\overrightarrow{FG}\) bằng vectơ \(\overrightarrow{AD}\). Chứng minh tứ giác CDGH là hình bình hành ?
\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)
=> Tứ giác FEHG là hình bình hành
=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)
Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)
=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)
Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)
Vậy tứ giác GHCD là hình bình hành.
giải bất phương trình sau:
\(x^4-4x^2+8x-4>0\)
Một công nhân phải hoàn thành 540 sản phẩm.Do có 2 người công nhân chuyển làm việc khác nên mỗi người còn lại phải làm thêm 3sarn phẩm. Tính số công nhân của tổ nếu năng suất mỗi người như nhau.
các bạn giúp mình bài này với:
cho 2 đường thẳng d: x+y-1=0 và △: x+2y+1=0. Viết phương trình đường tròn (c) có tâm I∈d, (C) cắt △ tại 2 điểm M,N có độ dài MN= \(2\sqrt{5}\) và M có hoành độ xM=3.
A B E F C D
Hỏi AB có // với EF ko ?
Cho a,b,c>0.Chứng minh rằng:\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{a+c}\le\dfrac{3.\left(a^2+b^2+c^2\right)}{a+b+c}\)
chứng minh bất đẳng thức
\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
Gía trị lớn nhất của biểu thức A= -/x+2/-11
giai bài S= 4/5.7+4/7.9+...+4/59.61
Help me!
Tìm n thuộc N để các số sau là STN
5n+2 chia hết cho n+1
Lập phương trình tham số của đường thẳng d đi qua điểm M(-2; 3) và có vec tơ pháp tuyến = (5; 1)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến