Giải thích các bước giải:
\(\begin{array}{l}
a)5x - 11y = 4\\
x = \frac{{11y + 4}}{5} = \frac{{10y}}{5} + \frac{{y + 4}}{5} = 2y + \frac{{y + 4}}{5}\\
x \in Z \Rightarrow \frac{{y + 4}}{5} = t \in Z\\
\Rightarrow y = 5t - 4\\
\Rightarrow x = \frac{{11\left( {5t - 4} \right) + 4}}{5} = 11t - 8\\
\left( {x;y} \right) = \left( {5t - 4;11t - 8} \right)\\
b)y = \frac{{3x - 5}}{2} = \frac{{2x - 4}}{2} + \frac{{x - 1}}{2} = x - 2 + \frac{{x - 1}}{2}\\
y \in Z \Rightarrow \frac{{x - 1}}{2} \in Z \Rightarrow x = 2t + 1\left( {t \in Z} \right)\\
\Rightarrow y = 2t + 1 - 2 + t = 3t - 1\\
\left( {x;y} \right) = \left( {2t + 1;3t - 1} \right)
\end{array}\)