Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
cho các số nguyên m,n,p thoả mãn;
m+n+p=2014
Chứng minh : m3+n3+p3 - 4 \(⋮\) 6
Giải bất phương trình 2x-3<(1+x )(2-x )
\(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
Cho tam giác ABC có \(\widehat{A}\) =\(60^o\) .CMR :
BC2 = AB2 + AC2 - AB.AC
Bài 2.61 - Đề toán tổng hợp (SBT trang 105)
Trong mặt phẳng Oxy cho tam giác ABC có \(A\left(1;2\right);B\left(-3;1\right)\) và trực tâm \(H\left(-2;3\right)\). Hãy tìm tọa độ đỉnh C ?
1-1/2+2-2/3+3-3/4+4-1/4-3-1/3-1/3-2-1/2-1
Cho a,b,c,d là số dương. Cmr
a/ \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{c}\right)\left(c+\dfrac{1}{a}\right)\ge8\)
b/ \(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
cho tam giác ABC có 3 cạnh góc nhọn trung tuyến AM có độ dài bằng cạnh BC. Đường tròn đường kính BC cắt các cạnh AB,AC theo thứ tự D và E. đường tròn ngoại tiếp tam giác ADE và đường tròn ngoại tiếp tam giác ABC cắt AM lần lượt tịa I và J.chứng minh BDIM nội tiếp, BIJC là hình bình hành
Giải phương trình :
\(\left(x^2-3x+2\right)\left(x^2-1\right)\left(x^2+5x+4\right)=0\)
tìm tập xác định của hàm số y = \(\sqrt {\dfrac{ x^2 + x + 2 } { | 2x - 1 | + x -2 } } \)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến