Đáp án:
Giải thích các bước giải:
\(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4025}}\)
\(=>\frac{A}{B}=\frac{(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4025})+(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026})}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4026}}\)
=>\(\frac{A}{B}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4025}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4025}}+\frac{\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4025}}\)
\(=>\frac{A}{B}>1 mà \frac{2013}{2014}<1\)
\(=>\frac{A}{B}>\frac{2013}{2014}\)