Cho hàm số $y = f(x)$ liên tục trên $K$, có đạo hàm cấp hai trên $K$ và điểm $x_0 \in K$. Trong các khẳng định sau, khẳng định đúng là
A.Nếu $f'({{x}_{0}})=0,f''({{x}_{0}})\le 0$ thì ${{x}_{0}}$ là điểm cực đại.
B.Nếu $f'({{x}_{0}})=0,f''({{x}_{0}})>0$ thì ${{x}_{0}}$ là điểm cực tiểu.
C.Nếu $f'({{x}_{0}})=0,f''({{x}_{0}})\le 0$ thì ${{x}_{0}}$ là điểm cực tiểu.
D.Nếu $f'({{x}_{0}})=0,f''({{x}_{0}})>0$ thì ${{x}_{0}}$ là điểm cực đại.