A B C E F
Ta có: \(\Delta ABC\) cân tại A (gt)
mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) (gt)
=> BE = CF
Xét \(\Delta ABE\) và \(\Delta ACF\) có:
BE = CF (cmt)
\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)
AB = AC (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)
=> AE = AF (2 cạnh tương ứng)
=> \(\Delta AFE\) cân tại A
mà \(\Delta ABC\) cân tại A
nên \(\widehat{ABC}=\widehat{AFE}\)
mà chúng ở vị trí đồng vị
=> FE // BC (dấu hiệu nhận biết)
=> BFEC là hình thang
mà BE = CF
=> BFEC là hình thang cân
Ta có: EF // BC (cmt)
=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)
mà \(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))
=> \(\Delta FEC\) cân tại E (t/c tam giác cân)
=> FE = EC (Đ/N tam giác cân)
mà hình thang BFEC cân
=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên