Cho a,b,c > 0 và a+b+c =6
Tìm Max của bt \(P=\dfrac{a-1}{a}+\dfrac{b-1}{b}+\dfrac{c-4}{c}\)
ta có \(P=3-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{4}{c}\) theo bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{6-c}\Rightarrow-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\le-\dfrac{4}{6-c}=\dfrac{4}{c-6}\)
\(\Rightarrow P\le3+\dfrac{4}{c-6}-\dfrac{4}{c}\)\(=3+\dfrac{24}{c^2-6c}\)
\(\Rightarrow P\) lớn nhất khi \(\dfrac{24}{c^2-6c}\) lớn nhất
\(\Leftrightarrow c^2-6c\) nhỏ nhất mà \(c^2-6c=c^2-6c+9-9=\left(c-3\right)^2-9\ge-9\)
\(\Rightarrow c^2-6c\ge-9\) \(\Rightarrow\dfrac{24}{c^2-6c}\le\dfrac{-24}{9}\)
\(\Rightarrow P\le3-\dfrac{24}{9}=\dfrac{1}{3}\)\(\Rightarrow MaxP=\dfrac{1}{3}\) dấu bằng xảy ra tại \(c=3;a=b=\dfrac{3}{2}\)
Rút gọn biểu thức: \(\dfrac{x^4y-xy^4}{x^2+xy+y^2}\)
a) Thực hiện phép tính: \(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}+\dfrac{y}{y-x}\)
b) Tìm x biết: \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
cho mình hỏi :
cho điểm M (4:1) và hai điểm A(a:0),B(0:b) với a,b >0, và A,B,M thẳng hàng . Gỏi a0, b0 là giá trị của a,b để diện tích tam giác OAB nhỏ nhất . Giá trị 3a0 - 2b0 là gì ?
=>Mình xin | cảm ơn |
Cho \(a,b,c>\dfrac{9}{4}.\)
Tìm \(MinP=\dfrac{a}{2\sqrt{b}-3}+\dfrac{b}{2\sqrt{c}-3}+\dfrac{c}{2\sqrt{a}-3}\)
BÀi 1: cho hình bình hành ABCD có tâm O . Gọi I là trung điểm BC và G là trọng tâm ΔABC. CM:
a)\(2\overrightarrow{AI}=2\overrightarrow{AO}+\overrightarrow{AB}\)
b)\(3\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)
giải phép tính: x-\(\sqrt{x}\) khi x 12+8\(\sqrt{2}\)
cho tam giác abc có a(3,5), b(1,2), c(5,2)
a) tìm tọa độ trung điểm I của bc
b) tìm tọa độ trọng tâm G của abc
c) tìm tọa độ D để abcd là hình bình hành
Cm đẳng thức sau : ===
\(\sin^6\left(\dfrac{x}{2}\right)-\cos^6\left(\dfrac{x}{2}\right)=\dfrac{1}{4}\cos x\left(\sin^2x-4\right)\)
cho tam giác ABC có b2 + c2= 2a2
Chứng minh: góc BAC =< 60 độ
Cm biểu thức ko phụ thuộc x
B=\(\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)\left(1+cosx\right)}\)
Cm
\(\dfrac{1+sin2x-cos2x}{1+sin2x+cos1x}=tanx\)
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến