1) ta đặc \(a^2+a+1=P=0\) \(\Rightarrow\left(a-1\right).p=0\) (vì \(P=0\))
ta có : \(P=a^2+a+1=0\Leftrightarrow a.P=a\left(a^2+a+1\right)=0\) (vì \(P=0\) )
\(\Leftrightarrow a.P=a^3+a^2+a=0\)
\(\Rightarrow a.P-P=\left(a-1\right).P=\left(a^3+a^2+a\right)-\left(a^2+a+1\right)\)
\(\left(a-1\right).P=a^3-1=0\Leftrightarrow a^3=1\) (vì \(\left(a-1\right).P=0\))
vậy \(a^3=1\left(đpcm\right)\)
2) ta có: \(a^2-2a+4=0\Leftrightarrow a^2-2a+1+3=0\)
\(\Leftrightarrow\left(a-1\right)^2+3=0\)
ta có : \(\left(a-1\right)^1\ge0\) với mọi \(a\) \(\Rightarrow\left(a-1\right)^2+3\ge3>0\) với mọi \(a\)
vậy phương trình : \(a^2-2a+4=0\) vô nghiệm
vậy không có giá trị \(a\) thỏa mảng \(\Leftrightarrow a^3+\dfrac{1}{a^3}\) không tồn tại và không có giá trị