Trong mat phang voi he toa do Oxy, cho 2 diem A(3;1), B(-1;3) & duong thang d: 3x-y-2=0
Lap pt duong tron (C) co tam thuoc duong thang d & di qua 2 diem A, B
Gọi tâm I thuộc d : 3x-y-3=0 nên \(I\left(a;3a-2\right)\)Vì (C) đi qua A và B nên ta có IA=IB
\(\overrightarrow{IA}=\left(3-a;3-3a\right)\Rightarrow IA^2=\left(3-a\right)^2+\left(3-3a\right)^2\)
\(\overrightarrow{IB}=\left(-1-a;5-3a\right)\Rightarrow IB^2=\left(1+a\right)^2+\left(5-3a\right)^2\)
Có IA=IB nên \(\left(3-a\right)^2+\left(3-3a\right)^2=\left(1+a\right)^2+\left(5-3a\right)^2\Leftrightarrow-8+4a=0\Leftrightarrow a=2\) Vậy I(2;4) \(R=IA=\sqrt{10}\)
Vậy ptdt (C) là : \(\left(x-2\right)^2+\left(y-4\right)^2=10\)
Cho (C) : x2+y2-2x-2my+m2-24=0 có tâm I và đường thẳng Δ: mx + 4y = 0. Tìm m biết đường thẳng Δ cắt (C) tại 2 điểm phân biệt A,B thoả mãn SIAB = 12.
Cho đường tròn (C) có phương trình:
x2 + y2 – 4x + 8y – 5 = 0
a) Tìm tọa độ tâm và bán kính của (C)
b) Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c) Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng 3x – 4y + 5 = 0
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d : 4x – 2y – 8 = 0
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Lập phương trình đường tròn đi qua ba điểm: M(-2; 4); N(5; 5); P(6; -2)
Tìm tâm và bán kính của đường tròn :
x2 + y2 – 4x + 6y – 3 = 0.
Lập phương trình đường tròn (C) có đường kính AB với A(1; 1) và B(7; 5)
Lập phương trình đường tròn (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng d : x – 2y + 7 = 0
Lập phương trình đường tròn (C) có tâm I(-2; 3) và đi qua M(2; -3)
chứng minh rằng : đường thẳng (Δ) : 2x - y = 0 và đường tròn (C) : x2 + y2 - 4x + 2y - 1 = 0 cắt nhau . Tính độ dài dây cung .
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến