Tìm m để phương trình sau vô nghiệm
(m-1)x2+2(m-3)x+4m+2=0
Để phương trình trên vô nghiệm thì:
\(\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.hoặc\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m>1\cup m< 1\\\left(m-3\right)^2-\left(m-1\right)\left(4m+2\right)< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}me1\\-3m^2-4m+11< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}me1\\m< \dfrac{2+\sqrt{37}}{-3}\cup m>\dfrac{2-\sqrt{37}}{-3}\end{matrix}\right.\)
Vậy...
Bài 40 (SBT trang 122)
Xét dấu các tam thức bậc hai sau :
a) \(2x^2+5x+2\)
b) \(4x^2-3x-1\)
c) \(-3x^2+5x+1\)
d) \(3x^2+x+5\)
Tìm m để f(x) = x2 - 2(m-1)x + m -2 \(\le\) 0 \(\forall\)x \(\in\) \([\)0;1\(]\)
Tìm các gái trị của m để bpt sau có nghiệm
\(\left\{\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
Mn giúp mjk đi mà
Tìm m để bpt sau có nghiệm :
2x2 - (m-9)x + m2 + 3m+4>= 0
Giải bất phương trình :
\(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2-\sqrt{3}\right)^{\frac{x-1}{x+1}}\)
\(\left(x^2-2x\right)^2-2\left(x-1\right)^2-1\ge0\) (1)
Xét dấu các biểu thức tích, thương các tam thức bậc hai
a. \(f\left(x\right)=x^2\left(2-x-x^2\right)\left(x+2\right)\)
b. \(f\left(x\right)=\frac{x^4-3x^3+2x^2}{x^2-x-30}\)
BT: Viết pt đường tròn đi qua M(1;2) và tiếp xúc với d: 3x - 4y = 2 = 0 tại điểm I(-2;-1). Bài này làm sao mọi người ơi, hướng dẫn giúp mình với ạ ?!!
Bài 3.27 (SBT trang 152)
Cho hai đường tròn \(\left(C_1\right):x^2+y^2-6x+5=0\)
\(\left(C_2\right):x^2+y^2-12x-6y+44=0\)
a) Tìm tâm và bán kính của \(\left(C_1\right)\) và \(\left(C_2\right)\)
b) Lập phương trình tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\)
Bài 3.23 (SBT trang 151)
Cho đường tròn (C) : \(x^2+y^2-6x+2y+6=0\) và điểm \(A\left(1;3\right)\)
a) Chứng tỏ rằng điểm A nằm ngoài đường tròn (C)
b) Lập phương trình tiếp tuyến với (C) xuất phát từ điểm A
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến