Cho hai điện tích điểm có cùng dấu và độ lớn \(q_1=4q_2\) đặt tại A, B cách nhau \(12 cm.\) Tìm điểm tại đó cường độ điện trường tổng hợp bằng không. A.\(AM = 4cm;BM = 8cm\) B.\(AM = 8cm;BM = 4cm\) C.\(AM = 17cm;BM = 5cm\) D.\(AM = 5cm;BM = 17cm\)
Phương pháp giải: + Công thức tính cường độ điện trường: \(E = k.\dfrac{{\left| q \right|}}{{{r^2}}}\) + Điện trường tổng hợp tại M: \(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} + ... + \overrightarrow {{E_n}} \) + Điện trường tại M triệt tiêu khi: \(\overrightarrow {{E_M}} = 0\) * Trường hợp: \(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} = 0 \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \,\,\left( 1 \right)\\{E_1} = {E_2}\,\,\,\,\,\left( 2 \right)\end{array} \right.\) - Nếu \({q_1};{q_2}\) cùng dấu, để \(\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \) thì M nằm trong \({q_1};{q_2}\) - Nếu \({q_1};{q_2}\) trái dấu, để \(\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \) thì M nằm ngoài \({q_1};{q_2}\) Giải chi tiết: Gọi M là điểm để cường độ điện trường triệt tiêu, khi đó: \(\overrightarrow {{E_M}} = \overrightarrow {{E_1}} + \overrightarrow {{E_2}} = 0 \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{E_1}} \uparrow \downarrow \overrightarrow {{E_2}} \,\,\left( 1 \right)\\{E_1} = {E_2}\,\,\,\,\,\left( 2 \right)\end{array} \right.\) Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}AM + BM = AB\\\dfrac{{A{M^2}}}{{B{M^2}}} = \dfrac{{\left| {{q_1}} \right|}}{{{q_2}}} = 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}AM + BM = 12cm\\\dfrac{{AM}}{{BM}} = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}AM = 8cm\\BM = 4cm\end{array} \right.\) Chọn B.