Phương pháp giải: Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) chuyển biểu thức thành lập phương một tổng rồi thay \(x = 8;\,\,\,y = 6\) để tính toán thuận tiện. Giải chi tiết:\(A = {x^3} + 6{x^2}y + 12x{y^2} + 8{y^3}\)\( = {x^3} + 3.{x^2}.2y + 3x{.2^2}{y^2} + {\left( {2y} \right)^3}\)\( = {\left( {x + 2y} \right)^3}\) Với \(x = 8;\,\,\,y = 6\)\( \Rightarrow A = {\left( {8 + 2.6} \right)^3} = {20^3} = 8000\) Chọn C.