Đáp án:
40 học sinh
Giải thích các bước giải:
Gọi số học sinh nam của lớp 9A là x (x > 0 ; x ∈ N)
số học sinh nữ của lớp 9A là y (y > 0 ; y ∈ N)
Số học sinh nữ bằng $\frac{3}{5}$ số học sinh nam.
⇒ y = $\frac{3}{5}x$
⇒ y - $\frac{3}{5}x$ = 0 (1)
Số học sinh nữ ít hơn số học sinh nam là 10 học sinh.
⇒ x - y = 10 (2)
Từ (1) và (2) ta có hệ phương trình:
$\left \{ {{y-\frac{3}{5}=0} \atop {x-y=10}} \right.$
Giải hệ này ta được: x = 25 ; y = 15
Với x = 25 ; y = 15 thỏa mãn điều kiện của ẩn.
Lớp 9A có số học sinh là:
25 + 15 = 40 (học sinh)