Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {\left( {z + 2} \right)^2} = 17\) cắt trục Oz tại hai điểm A, B. Độ dài đoạn AB bằng A.\(4\sqrt {13} \) B.\(2\sqrt {17} \) C.\(2\sqrt 3 \) D.\(\sqrt {17} \)
Phương pháp giải: - Tìm giao điểm của mặt cầu với trục Oz bằng cách cho \(x = y = 0\). - Sử dụng công thức tính độ dài đoạn thẳng \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \). Giải chi tiết:Cao độ của mặt cầu \(\left( S \right):{x^2} + {y^2} + {\left( {z + 2} \right)^2} = 17\) và trục Oz là nghiệm của phương trình: \({\left( {z + 2} \right)^2} = 17 \Rightarrow \left[ \begin{array}{l}z = \sqrt {17} - 2\\z = - \sqrt {17} - 2\end{array} \right.\). Suy ra giao điểm của mặt cầu \(\left( S \right)\) và trục \(Oz\) là: \(A\left( {0;0;\sqrt {17} - 2} \right)\) và \(B\left( {0;0; - \sqrt {17} - 2} \right)\). Vậy \(AB = \sqrt {{{\left( { - 2\sqrt {17} } \right)}^2}} = 2\sqrt {17} .\) Chọn B.