Trong không gian Oxyz. Cho mặt phẳng .\(\left( P \right):2x - y + 2z - 4 = 0\).. Khoảng cách từ điểm \(M\left( {3;1; - 2} \right)\) đến mặt phẳng \(\left( P \right)\) bằng: A.\(\dfrac{1}{3}.\) B.\(2.\) C.\(3.\) D.\(1.\)
Phương pháp giải: Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\). Giải chi tiết:Khoảng cách từ \(M\left( {3;1; - 2} \right)\) đến mặt phẳng \(\left( P \right):2x - y + 2z - 4 = 0\) là\(d = \dfrac{{\left| {2.3 - 1 + 2\left( { - 2} \right) - 4} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = 1.\) Chọn D.