Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {2; - 1;0} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z + 2 = 0\). Gọi \(I\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( P \right)\). Phương trình của mặt cầu tâm \(I\) và đi qua \(A\) là:
A.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)
B.\({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)
C.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)
D.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)

Các câu hỏi liên quan