Cho \(\int\limits_0^1 {f\left( x \right)dx} = - 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng: A.\( - 10\) B.\(12\) C.\( - 17\) D.\(1\)
Phương pháp giải: Sử dụng các tính chất của tích phân: \(\int\limits_a^b {\left[ {mf\left( x \right) + ng\left( x \right)} \right]dx} = m\int\limits_a^b {f\left( x \right)dx} + n\int\limits_a^b {g\left( x \right)dx} \). Giải chi tiết:\(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = \int\limits_0^1 {f\left( x \right)dx} + 3\int\limits_0^1 {g\left( x \right)dx} \)\( = - 2 + 3.\left( { - 5} \right) = - 17\). Chọn C.