Tìm điều kiện của \(m\) để đồ thị hàm số \(\left( {{C_m}} \right):y = {x^4} - m{x^2} + m - 1\) cắt trục hoành tại \(4\) điểm phân biệt. A.\(m > 1\) B.\(\left\{ \begin{array}{l}m > 1\\m e 2\end{array} \right.\) C.\(m < 1\). D.\(m e 2\)
Phương pháp giải: - Xét phương trình hoành độ giao điểm. - Đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt \( \Leftrightarrow \) phương trình hoành độ giao điểm có 4 nghiệm phân biệt. - Giải điều kiện trên tìm \(m\). Giải chi tiết:Xét phương trình hoành độ giao điểm \({x^4} - m{x^2} + m - 1 = 0\). Đặt \(t = {x^2}\,\,\,\left( {t \ge 0} \right)\) ta được phương trình \({t^2} - mt + m - 1 = 0\). Để đồ thị hàm số \(\left( {{C_m}} \right):y = {x^4} - m{x^2} + m - 1\) cắt trục hoành tại 4 điểm phân biệt thì phương trình \({t^2} - mt + m - 1 = 0\) phải có hai nghiệm dương phân biệt. \( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4m + 4 > 0\\m > 0\\m - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m e 2\\m > 1\end{array} \right.\) Chọn B.